[pageLogInLogOut]

#Research & Development

Textile daylight management when the winter sun is at an angle

When the sun is currently shining, shading textiles face particular challenges. On the one hand, they should allow as much daylight as possible into the rooms during the dark season. On the other hand, the angle of incidence of the sun's rays is so low that the light is particularly dazzling - much more so than in summer. The German Institutes of Textile and Fiber Research (DITF) are using special light measurement techniques to research suitable shading textiles.
The DITF light lab. Photo: DITF
The DITF light lab. Photo: DITF


Daylight enhances well-being and has many advantages over artificial lighting. Sensible daylight management can therefore increase the ability to perform and concentrate. As less artificial light is required and solar gains and losses are used for room air conditioning, daylight management also saves energy.

Scheme for determination of the cut-off angle with 1 light source, 2 diffuser, 3 measurement sample on motorized rotating stage, 4 collimating lens, 5 spectrometer. Drawing: DITF
Scheme for determination of the cut-off angle with 1 light source, 2 diffuser, 3 measurement sample on motorized rotating stage, 4 collimating lens, 5 spectrometer. Drawing: DITF


Textile daylight systems influence the incidence of light and are mainly designed to be movable. Internal systems include, for example, roller blinds, folding blinds and curtains. External systems are external venetian blinds, awnings and screens that are guided in front of the façade. The DITF can precisely measure daylight behavior in its light and dark laboratories - even beyond existing standardized test methods.

A test method developed in Denkendorf allows the glare control of solar protection devices to be re-evaluated and has been included in the standard to determine the cut-off angle. This cut-off angle describes the extent to which a solar protection device can block the transmission of direct light from a certain angle of incidence. In the currently valid standard, glare control is quantified using the two characteristics of normal and diffuse light transmittance. For solar protection devices with an openness coefficient of 1-3 %, a higher glare control class can be achieved. This applies to cut-off angles of 65° or less. The cut-off angle is determined by an angle-dependent measurement of the direct light transmittance. During the test, the solar protection textile is rotated in a modified test sample holder from the zero point until the direct light transmittance falls below a defined threshold value. This process is repeated after a gradual azimuthal rotation of the test sample, in other words a rotation of the textile in the test sample holder. Depending on the symmetry properties of the sample, up to 29 individual measurements may be required to determine the cut-off angle.

At the DITF, testing and development facilities for other photometric requirements such as incident light, self-luminous textiles and light-conducting textiles are available for industrial product developments.

The direct transmission of a textile screen when changing the angle of incidence and the specific angle of rotation. Photos: DITF
The direct transmission of a textile screen when changing the angle of incidence and the specific angle of rotation. Photos: DITF



More News from Institut für Textil- und Verfahrenstechnik Denkendorf

More News on Research & Development

#Research & Development

New DIN SPEC assesses environmental impact of textile fragments in soil

Textile products made from synthetic fibres, finished fabrics or dyed materials release fibre fragments into the environment at every stage of their life cycle. With the new DIN SPEC 19296, Hohenstein has developed a standardised testing method to analyse how these fragments behave in soil under natural conditions. Until now, little was known about their environmental behaviour or potential ecological effects once released.

#Research & Development

Solid Air Dynamics wins second place at RWTH Innovation Award

On 30 January, RWTH spin-off Solid Air Dynamics was awarded second place in the RWTH Innovation Awards for its research in the field of aerogel fibres. Manufactured from renewable raw materials, aerogel fibres offer outstanding thermal insulation, are extremely lightweight and completely biodegradable, and can consist of over 90 per cent air.

#Research & Development

Testing and research laboratory ensures safe and more sustainable products worldwide

For 80 years, Hohenstein has stood for independent testing, scientific expertise and practical solutions. Today, the testing and research service provider supports manufacturers and brands worldwide in making textiles, hardlines and medical devices safe, more sustainable and market-ready – thereby building trust among consumers. With an international presence and interdisciplinary expertise, Hohenstein supports its customers from production through to market launch, helping them navigate an environment of growing regulatory and societal demands.

#Research & Development

Award-winning research for sustainable carbon fibre cycles

Sustainable recycling of carbon fibres is possible through targeted electrochemical surface modification, which makes the sizing of carbon fibres resistant to solvolysis. ITA PhD student Sabina Dann was awarded the MSW Award from RWTH Aachen University for her master's thesis on this development. The award ceremony took place on 12 November 2025 in Aachen.

Latest News

#Recycling / Circular Economy

Circulose restarts commercial-scale production at Ortviken plant in Sundsvall

Circulose today announced the restart of its commercial-scale production plant at Ortviken in Sundsvall, Sweden, marking a significant step in scaling next-generation materials for the global fashion industry. The company plans to resume production of CIRCULOSE®, a recycled pulp made entirely from discarded cotton textiles, in the fourth quarter of 2026.

#Textiles & Apparel / Garment

VIATT 2026 to debut German Pavilion, strengthening European participation alongside key Asian textile hubs

Vietnam’s textile and garment sector continues to be a major contributor to the country’s economic growth, with export revenues expected to reach USD 46 billion in 2025, a 5.6% increase from 2024 . From 26 – 28 February, the Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) is set to contribute to economic growth opportunities by accelerating digital transformation and green transition across the entire textile value chain. The upcoming edition will respond to the rising demand for advanced technologies and sustainable materials with the introduction of the German Pavilion, alongside strong exhibitor participation from key Asian sectors, as well as several high-profile fringe events.

#Sustainability

Ying McGuire becomes new CEO of Cascale

Cascale today announced the appointment of Ying McGuire as Chief Executive Officer, effective June 1, 2026.

#Technical Textiles

Sustainable, lightweight, and sound absorbing: Polyester-based front trunk solution for BEVs

As car manufacturers look to further reduce their carbon footprint, Autoneum has developed an innovative front trunk solution for battery electric vehicles (BEVs), made entirely from polyester-based textile. The Ultra-Silent Frunk offers significant weight reduction, improved acoustic and thermal insulation, and uses up to 70 percent recycled material, supporting sustainable and efficient vehicle design. Autoneum, global technology leader in acoustic and thermal management for vehicles, has already received orders for the new frunk from three major OEMs in Asia and Europe to be built in three BEV models. Series production for two BEVs has been underway in China and Germany since last year.

TOP