[pageLogInLogOut]

#Yarn & Fiber

Toray develops revolutionary Ion-Conductive polymer membrane for batteries that could dramatically extend vehicular cruise ranges

Toray Industries, Inc., announced that it has developed an ion-conductive polymer membrane that delivers 10-fold the ion conductivity of predecessors. This new offering could accelerate the deployment of solid-state batteries (see glossary note 1), air batteries (glossary note 2), and other lithium metal batteries, greatly expanding the cruising ranges of electric vehicles, industrial drones, urban air mobility systems, and other transportation modes.

A transition to electric mobility is increasing demand for lithium-ion batteries delivering higher energy densities. Efforts are accordingly under way to develop lithium metal batteries whose anodes enable the highest theoretical energy capacity.

The challenge of lithium metal is its high surface reactivity and the stability issues associated with its dissolution and precipitation morphology during charging and discharging cycles. One notable drawback is the growth of lithium dendrites (glossary note 3), which can cause short circuits. Metallic lithium anodes in batteries employing solid electrolytes pose similar hurdles, and have yet to see practical applications.

Toray developed polymer membranes offering ion conductivity through hopping conduction. This mechanism enables lithium ions to traverse between interacting sites within polymer membranes, effectively jumping across sites. The membranes remain non-porous. This breakthrough leveraged the company’s expertise in molecular design technology, particularly with aramid polymers (glossary note 4), which it refined over many years.

Toray estimates that enhancing the hopping site (glossary note 5) structure and designing a new polymer with more hopping sites has delivered the highest ionic conductivity in the 10-4 S/cm range for a hopping-conductive polymer film.

Toray confirmed that the polymer film functions effectively as a protective film on lithium metal surfaces to overcome the issues mentioned earlier, and should extend the service lives of batteries using lithium metal lithium anodes.

Joint research with Professor Nobuyuki Imanishi of the Graduate School of Engineering at Mie University verified the achievement of 100 charge-discharge cycles for the first time in a dual component lithium-air battery employing this polymer membrane as a separator.

Toray will accelerate research to swiftly establish technology for deployment on solid-state, air, and other advanced batteries.

Part of the development work for the new membrane was through a project funded by the New Energy and Industrial Technology Development Organization (NEDO). Toray plans to present its technology at the 91st Annual Meeting of the Electrochemical Society of Japan, which is from March 14 through 16 this year.

Toray will keep leveraging its core technologies of synthetic organic and polymer chemistry, biotechnology, and nanotechnology to innovate materials in keeping with its commitment to delivering new value and contributing to social progress.

Figure 1: Positioning of conventional microporous membrane and new membrane
Figure 1: Positioning of conventional microporous membrane and new membrane


Figure 2: Hopping conduction
Figure 2: Hopping conduction


Glossary

1. A solid-state battery uses solid electrolytes instead of the liquid or polymer that lithium-ion batteries employ. The inflammable electrolytes of solid-state batteries enhance safety. Another benefit is that charging is faster.

2. A lithium-air battery is light and offers high capacity. It employs a lithium metal anode and an oxygen cathode. A organic electrolyte anode and aqueous electrolyte cathode structure is under consideration.

3. Lithium dendrites are branch-like lithium crystals that grow when charging batteries. Dendrite growth can degrade battery performance and cause short circuits.

4. An aramid (aromatic polyamide) is a high-performance polymer offering superb heat resistance and rigidity. Toray is the world’s only company to commercialize aramids, through its mictron® film brand. A common application is data storage tapes, which taking advantage of its outstanding rigidity for mass-produced films. Another use is as a circuit material for thin films because its heat resistance ranks second only to that of polyimide.

5. A hopping site refers to specific atoms or atomic groups in polymer chains serving as a transit point for lithium ions to undergo hopping conduction in a polymer membrane.


More News from Toray Engineering Co. Ltd.

#Recycling / Circular Economy

Toray develops recycling technology that retains carbon fiber strength and surface quality

Toray Industries, Inc., announced today that it has developed a recycling technology that can decompose diverse carbon fiber reinforced plastics (CFRP) made from thermosetting resins while retaining the strength and surface quality of those fibers. The company drew on this technology to create a nonwoven fabric employing recycled carbon fibers.

#Composites

HEAD launches more sustainable(1) BOOM RAW racquet on Earth Day by using Toray’s bio-circular carbon fibers

HEAD continues to innovate with the launch of the BOOM RAW tennis racquet, an encouraging development in the search for a more sustainable future for racquet sports. All of the carbon fibers are bio-circular carbon fibers in the limited-edition and highly innovative BOOM RAW racquet, which offers the same explosive power - along with the same fun, feel and easy playability - as the regular, in-line BOOM racquet. The bio-circular carbon fibers are manufactured by Toray and its subsidiary Toray Carbon Fibers Europe.

#Recycling / Circular Economy

Companies in Japan initiate demonstration to expand the automotive recycling process

DENSO CORPORATION and other partners have been chosen by an industry-government-academia collaborative project aiming to expand the recycle content for automobile in the fiscal year 2023 supported by Ministry of the Environment, Japan.

#Yarn & Fiber

Toray develops durable reverse osmosis membrane

Toray Industries, Inc., announced today that it has developed a highly durable reverse osmosis (RO) membrane (see glossary note 1). This innovative offering guarantees the long-term provision of high-quality water. It also maintains the superior removal performance of Toray’s existing membranes vital for reusing industrial wastewater and treating sewage.

More News on Yarn & Fiber

#Yarns

January 2026 marks Asahi Kasei’s restart of Bemberg production in restored sections of the Nobeoka facility

Beginning January 2026, production at the Asahi Kasei Nobeoka facility – Bemberg’s only production site – will gradually resume, marking a new chapter following the partial shutdown caused by the April 2022 incident. This progress is the result of significant investments and continuous work toreinforce safety measures, restore full operational capacity, and establish long- term stability.

#Yarns

Acelon introduces new functional yarns for fire safety and comfort applications

Acelon has presented two new functional yarn developments, AceXflame® and MistX®, aimed at expanding performance options for home textiles, industrial applications, and apparel.

#Yarns

Durak Tekstil enters 2026 with positive momentum, strengthens its global market focus

Durak Tekstil, maintaining its profitability and turnover levels in 2025 compared to the previous year, prioritizes growth through its export-oriented sales strategy. Increasing both its capacity and utilization rate, the company anticipates further gains in 2026 through expansion in global markets.

#Weaving

Vandewiele Group: Innovation across the textile value chain at ICFE Istanbul 2026

At the 2026 Istanbul Carpet & Flooring Expo (ICFE), Vandewiele Group presents its latest advancements spanning the entire textile value chain. From spinning and weaving to tufting, carpet manufacturing and digital finishing, the Group demonstrates how integrated innovation can boost performance, efficiency and sustainability across all stages of production. As a global technology leader, Vandewiele continues to develop solutions that strengthen processes, enhance product quality and enable smarter, greener manufacturing.

Latest News

#Research & Development

Innovation center for textile circular economy inaugurated

Just over eight months after the foundation stone was laid, the new Innovation Center for Textile Circular Economy was officially inaugurated today at TITK Rudolstadt. Thuringia's Minister President Mario Voigt, TITK Director Benjamin Redlingshöfer, and other guests of honor cut the ribbon to the modern building complex and viewed the premises, which are now ready for occupancy. The “DICE – Demonstration and Innovation Center for Textile Circular Economy” is TITK's largest single investment to date. The Free State of Thuringia supported the total cost of €11.5 million with €8 million in GRW and FTI funding.

#Research & Development

Sustainable design of Geosynthetics and roof underlayments made from recyclates

Is it possible to recover plastic recyclates from previously unused waste streams in order to produce high-quality fibers and films? How can bio-based polymer fibers be manufactured so as to allow adjustable biodegradability? These are the questions being addressed by researchers from the Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE in the Zirk-Tex project.

#Associations

Waste2Fashion: FTTH Committed to advancing Circular Fashion in the Mediterranean

As an official partner of the Waste2Fashion project, the Tunisian Federation of Textile and Apparel (FTTH) participated in the Kick-off Meeting held on 10–11 December in Spain. The event brought together project partners from across the Mediterranean, including Spain, Italy, Egypt, Lebanon, and Tunisia, to align on a shared vision and initiate the first implementation steps.

#Associations

AATCC announces 2025 Herman & Myrtle Goldstein Graduate Student Paper Competition winners

The American Association of Textile Chemists and Colorists (AATCC) recognized the winners of the 2025 Herman & Myrtle Goldstein Graduate Student Paper Competition. Founded in 1982 to give student members the chance to conduct and present original research, the competition was renamed in 1994 in honor of Herman and Myrtle Goldstein, following their US$60,000 endowment. Their gift is a lasting remembrance of their dedication to young people in the textile industry.

TOP