[pageLogInLogOut]

#Research & Development

"Keeping an eye on processes"

Pioneer: Pierangelo Gröning is a member of Empa's Directorate and established research into Advanced Manufacturing at Empa. Image: Empa
Pierangelo Gröning, President of the Advanced Manufacturing Technology Transfer Center (AM-TTC) Alliance and Empa's Research Commission and member of Empa's Directorate, explains the research institute's role in AM research.

What does the buzzword Advanced Manufacturing actually mean? What is so new about it?

Today, modern materials science involves more than just the development of materials. As long as the novel material cannot be processed, it has no technological significance. Empa is conducting research on a number of novel materials that can hardly or not at all be processed using well-known standard processes. Hence, we devote a great deal of attention to developing and refining manufacturing processes and processing methods – and in this respect we have achieved quite a lot in recent years.

How did this all begin?

Originally, nanomaterials triggered this thought in me. When you hear the keyword "nano", it quickly becomes clear that there simply aren't any processing machines there yet, and also that industry can't build on existing knowledge and simply further develop established processes in this area. So we had to look at process technology even then and show ways of generating added value with the help of these new materials. The second trigger was digitalization and the question of how to make the most of the possibilities of digitalization in manufacturing.

Illustration: Empa
Illustration: Empa


Do you mean automation for mass production?

No. I'm not thinking primarily about optimizing supply chains and manufacturing processes, but really about optimizing the product and its quality. There is an illustrative example from coating technology: We use plasmas for the deposition of hard coatings. Thanks to modern power electronics, we can now use pulse modulation to control the composition of the reactive particles, i.e. ions and radicals in the plasma, and thus directly influence the composition and structure of the coated layer, i.e. its physical properties. Compared to conventional plasmas, the coating process is virtually digitized by pulse modulation. This opens up completely new possibilities for optimizing the coating properties. This then begs the question: How do I find the right solution in this vast jungle of possibilities? We can't leave the product engineers out in the cold here – we need scientists who understand these processes from the bottom up. And in the age of digitalization, in-depth understanding means: I have to be capable of simulating the deposition process on the computer. Only in this way is it possible to compile a kind of book of recipes that suggests the right parameters to process engineers, with which they can achieve optimum results.

So digitalization alone is still no help?

No. Many people think that I now have lots of data and a neural network, and I'll just let it calculate until a suitable solution will pop up. But you can't take it that easy. That would just be trial-and-error with a little help from digital tools. To fully exploit the potential of digitalization, you have to physically understand the manufacturing processes much better, at a level where you can simulate them. Simulation can then be used to quickly and reliably determine the optimal process parameters. However, we are still a long way from achieving this, as it requires highly complex multiscale modeling that is computationally very intensive.



What is so special about AM?

The manufacturing processes we are talking about are additive processes. This means, material synthesis and production of the final product are combined in an integral manufacturing process. This, of course, increases complexity and poses completely new challenges for quality management, since the material quality of the product must now be ensured in addition to dimensional accuracy. A very clear-cut example is 3D metal printing. The material properties of the geometrically complex workpieces that can be produced by 3D printing processes are not isotropic, in other words uniform in all spatial directions. This is due to the sequential build-up process of 3D printing and the way the laser is guided. Various laser parameters such as laser power or scan speed can be used to influence the melting and recrystallization process, which in turn affects the properties of the material. In short, mastering 3D printing as a manufacturing process requires a in-depth understanding of materials and processes. Knowledge that is not available even in larger companies. And SMEs quickly reach their limits in this respect. You can clearly see the need for close cooperation between research and industry – in order to establish these new technologies on the market and thus give Swiss companies an innovative edge.

How will AM technologies play out in everyday life?

That's a tricky question. Perhaps the best way is to look at the trends and needs of industrial production. These are, on the one hand, individualization – customized products – and, as we have experienced in the last two years, improved resilience in production. This can be solved by high agility and short supply chains, and this is exactly what AM enables. What's more, AM has the potential to significantly change the production landscape by replacing centralized mass production with decentralized small-scale production – a huge opportunity for Switzerland as a production site.

What is Empa's role in the introduction of these technologies?

In addition to researching and developing new materials optimized for manufacturing technology, we also have research projects aimed at making technologies suitable for everyday use in industry. That is, to develop and provide the necessary tools to ensure robust, reliable use of the technology. As already mentioned, we develop simulation software to quickly and reliably determine optimal process parameters, but also to train and improve process understanding. Moreover, we develop measurement systems for monitoring production processes in real time. The development of such complex systems requires close cooperation between specialists from numerous fields. This is a great strength that we can exploit here at Empa, but also a strength of the entire ETH Domain.


More News from TEXDATA International

#Recycling / Circular Economy

Responsible Textile Recovery Act of 2024 signed by Governor

Senator Josh Newman (D-Fullerton) is proud to announce that Senate Bill 707 (SB 707), the Responsible Textile Recovery Act of 2024, has been signed into law by the Governor of California, Gavin Newsom. This groundbreaking legislation establishes the country’s first Extended Producer Responsibility (EPR) textile recycling program, marking a significant step forward in the state’s efforts to combat waste and promote sustainability.

#Textiles & Apparel / Garment

Modtissimo promotes sustainability with 28 coordinates in the Green Circle

Modtissimo is proving more and more to be a textile and clothing show that delivers the latest innovations in the area of sustainability, with the iTechStyle Green Circle being the main showcase for companies' creations. In this 60+4 edition, taking place on 12 and 13 September, 28 coordinates will be exhibited in a section organised by CITEVE and curated by Paulo Gomes.

#Europe

The EU and Egypt team up to mobilise private sector investments at Investment Conference and sign a Memorandum of Understanding underpinning €1 billion in macro-financial assistance for Egypt

At the EU-Egypt Investment Conference, co-organised by the EU and the Government of Egypt on 29-30 June, the EU and Egypt are teaming up to intensify private sector investments in Egypt. They are also signing a Memorandum of Understanding (MoU) for the disbursement to Egypt of up to €1 billion in Macro-Financial Assistance.

#Raw Materials

New meta-study highlights that hydrolysis prevents the formation of persistent PLA microplastics in the environment

A systematic review of published scientific literature conducted by HYDRA Marine Sciences finds that in the presence of water or humidity, the bioplastic polylactic acid (PLA) will fully hydrolyze, and no persistent nano- or microplastics will remain or accumulate in the environment.

More News on Research & Development

#Research & Development

The Textile Institute marks 100 years with a global expansion drive

Fresh from its highly successful 63rd conference held in Porto, Portugal, from October 7-10, The Textile Institute (TI) will celebrate a major milestone at the ITMA Asia+CITME textile machinery exhibition in Singapore later this month.

#Recycling / Circular Economy

Closing the Loop in the Textile Industry: Value Creation in the State of Brandenburg

How can the state of Brandenburg benefit from a circular textile industry? This question is addressed in the new policy paper "Closing the loop in the textile industry: Value creation in the state of Brandenburg." Based on the „TexPHB“ feasibility study funded by the Brandenburg Ministry of Climate Protection, it shows how textile waste can be integrated into new value chains.

#Research & Development

Better, faster, bio-based: Functional new Plastic alternatives

How can new bio-based and biohybrid materials with improved features be developed faster? Six Fraunhofer institutes are jointly exploring this question in the SUBI²MA flagship project, using an innovative bio-based polyamide developed by Fraunhofer researchers as a model. Its specific properties make it a promising alternative to fossil-based plastics.

#Research & Development

A smarter way to verified Chemical Compliance

Hohenstein and GoBlu Drive Innovation in Sustainable Supply Chain Management As regulatory demands, customer expectations, and sustainability goals continue to grow, the ability to manage chemical compliance and data across complex supply chains has become critical. Hohenstein and The BHive® by GoBlu are initiating a strategic partnership to enhance chemical management in the textile sector. The collaboration delivers more than just a service – it provides an integrated, future-ready solution for brands, manufacturers and suppliers seeking trusted chemical management and credible sustainability.

Latest News

#Textiles & Apparel / Garment

Nike unites innovation, design and product teams to accelerate athlete-centered innovation

Nike, Jordan Brand and Converse are joining forces under a new, athlete-focused creation structure aimed at accelerating innovation and driving growth across NIKE, Inc. The new setup unites the Innovation, Design and Product teams from all three brands into a single “creation engine” that will enable greater sharing of insights, technology and manufacturing methods throughout the innovation process. This integration is part of Nike’s new Sport Offense strategy and is designed to enhance the creation of products that help athletes perform at their best.

#ITMA Asia + CITME Singapore 2025

DORNIER celebrates its anniversary at ITMA Asia + CITME

To mark its 75th anniversary, machine and plant manufacturer Lindauer DORNIER will be presenting the latest developments in its rapier and air-jet weaving machines at ITMA Asia + CITME in Singapore (Hall 2, Stand B401) from 28 to 31 October 2025. The focus will be on energy-efficient weaving technologies, new IoT solutions for networked textile production and systems for the series production of modern fibre composite components.

#Natural Fibers

BCI warns against ‘dangerous dilution’ of EU corporate directives

The approval of the European Commission’s Omnibus I proposal by the European Parliament’s Committee on Legal Affairs, accepting controversial changes to key sustainability directives is of great concern. These changes, namely to the Corporate Sustainability Reporting Directive (CSRD) and the Corporate Sustainability Due Diligence Directive (CSDDD), threaten to significantly dilute business reporting and due diligence obligations.

#Sustainability

Pioneering open-source framework shows how early innovation drives a just and net-zero fashion future

The non-profit H&M Foundation, in collaboration with Accenture, has unveiled From Signals to Systems Change, an insight report calling on the fashion industry to rethink its role in transformation. At its core is the Reimagined System Map, a pioneering open-source framework that visualises how early-stage innovation could drive a just and net-zero textile future.

TOP