[pageLogInLogOut]

#Research & Development

Elektrolysis made in Baden-Württemberg

Solar energy and other types of regenerative energy are representative of the energy turnaround in Germany. Water electrolysis is a key technology designed to support the energy turnaround at a weak point, namely the ability to store the energy produced. Hydrogen is a secondary energy carrier that enables efficient energy storage due to its high energy density. Therefore, water electrolysis can make a decisive contribution to climate neutrality.

DITF develop technology for new, reinforced membranes for electrolyzers

Hydrogen is a clean energy carrier. When converted to electricity in a fuel cell, it is characterized by a very high energy yield. Hydrogen is also transportable and can therefore be used locally by consumers. Hydrogen technology is particularly important for energy-intensive industries such as steel production or in the operation of refineries. But hydrogen is also very popular for modern mobility solutions: as a transportable energy carrier that is also locally emission-free.

Construction of a modern electrolyzer

In the joint research project 'Electrolysis made in Baden-Württemberg', the DITF are participating in the construction of a state-of-the-art electrolyzer for alkaline water electrolysis, which will serve to transfer technology to industry.  The project is coordinated by the Center for Solar Energy and Hydrogen Research (ZSW), which will build the demonstrator with an electrical output of one megawatt. The task of the DITF is to develop and manufacture nonwoven-reinforced membranes for the electrolysis cell.

Water electrolysis is an electrochemical process with the aim of obtaining hydrogen from water. In an electrolysis cell, water is split electrochemically and releases gaseous hydrogen at a cathode and oxygen at an anode. The anode and cathode are separated by a membrane. The passage of current is not interrupted by the membrane. Depending on the design of the electrolytic cell, the ionic conductivity of the membrane allows the exchange of ions. The membrane is gas-tight and thus prevents the mixing of the gases produced at the anode and cathode.

Membranes of this type are already in widespread use, but they usually have a relatively high ohmic resistance due to their material thickness. A correspondingly higher energy input is required for electrolysis. Thin and highly efficient membranes with better electrochemical properties, on the other hand, have so far not been robust enough, especially when used in larger cells. They are sensitive to mechanical stresses and are prone to stress cracking.

Reinforced membranes from the DITF

As part of the research project, membranes made of polymers are being produced at the DITF that are modified and thus precisely tailored to their task. The membranes exhibit excellent electrochemical properties. They are chemically stable in an alkaline environment, i.e. under the conditions that prevail inside the electrolytic cell. The membranes should also have good long-term stability. This means that they work almost faultlessly even under continuous stress. The membranes are inexpensive to manufacture and use.

The mechanical stability of the membrane is a central point in the development. On the one hand, it should be as thin as possible in order to work highly efficiently. On the other hand, it should not fall below a certain thickness to ensure mechanical load capacity. The mechanical load cannot be avoided, since during block assembly the membranes are pressed together with the mostly porous, structured surfaces of the electrodes in the block.




To alleviate this difficult situation, researchers at the DITF are taking a special approach: The membranes can be mechanically reinforced by using nonwovens made of ultrafine fibers (fiber diameter 0.2-2µm). The development of suitable nonwovens, their structural design and the choice of their chemical composition are just as great a challenge as the manufacture of the membranes. A specially developed integrated reinforcement frame made of composite materials also absorbs mechanical pressure loads and provides additional protection for the membrane. In addition to pure mechanical stabilization, it will be possible to use the nonwovens to reduce the passage of hydrogen through the membrane. The interface between the membrane and the nonwoven has a special significance in the structure of this composite: The electrical contact resistance must be kept low here so as not to impair the efficiency of the cell. This can be influenced by the choice of material for nonwoven fabrication or by surface treatment of the nonwoven. In this way, the electronic properties, but also the fiber-matrix (or fiber-membrane) adhesion, which is crucial for achieving an increase in stability through the use of nonwovens, are ensured and further developed.

SEM-micrograph of the membrane.  © 2020 DITF
SEM-micrograph of the membrane. © 2020 DITF


Bringing together such disparate materials as an electrochemical membrane and a textile nonwoven is a very challenging undertaking. This makes the first promising laboratory results all the more noteworthy. The first nonwoven-reinforced membranes are available and are being tested for their practical suitability. The next step will be to optimize the structure of the membranes. At a later date, they will then be in service - for the time being within the demonstrator, which will set the state of the art in this joint project.

Project information

Under the slogans 'Electrolysis made in Baden-Württemberg', the Baden-Württemberg Ministry of Economics, Labor and Housing is funding a collaborative research project with five million euros. The lead partner is the Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW). In addition to the German Institutes of Textile- and Fiber Research Denkendorf (DITF), the collaborative partners are the German Aerospace Center (DLR) and Hahn-Schickard Gesellschaft für angewandte Forschung (HS) in Stuttgart. The aim is to develop a modern, highly efficient water electrolysis plant that will serve as a demonstrator for technology transfer. The technology is intended to help plant engineers and component manufacturers position themselves advantageously in international competition. Specialist companies will be involved in the development project from the outset. The project sees itself as an initiator for state-of-the-art electrolysis production in Baden-Württemberg.




More News from Deutsche Institute für Textil- und Faserforschung Denkendorf

#Research & Development

More safety and comfort for protective clothing thanks to auxetic fabrics

When everyday materials are pulled, they stretch or elongate in the direction of the pull and become narrower in cross-section. We can also observe this property in two-dimensional textiles. Auxetic structures behave differently here. They have the striking property of not changing under tensile stress or even increasing their width or thickness. These properties are advantageous, for example, in protective textiles or textile filter media. The DITF are researching auxetic fabrics for various applications.

#Research & Development

Panty liners prevent bacterial vaginosis

Worldwide, almost one third of women of childbearing age suffer from bacterial vaginosis. This is when the sensitive microbiome of the vagina becomes unbalanced. Such a disorder of the vaginal flora can cause urogenital infections, abscesses on the ovaries or fallopian tubes or premature births. This significantly increases the risk of infertility in women and of contracting a sexually transmitted disease or HIV.

#Research & Development

DITF send a signal for climate protection

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have successfully implemented extensive investments in photovoltaic systems at their site in Denkendorf. The systems installed on the roofs of the buildings and covered parking lots have a total installed capacity of 840 kilowatt peak (kWp). The DITF invested 1.6 million euros in this with the support of the state of Baden-Württemberg. The system was ceremonially put into operation on September 17, 2025.

#Research & Development

4.2 million Euros for research into textile recycling

Around the world, used textiles are still rarely recycled and pile up into huge mountains of waste. A recent study by the Boston Consulting Group (BCG) drew attention to this problem. However, the low recycling rate is also due to the fact that only a small percentage of used textiles are actually suitable for recycling into high-quality materials and for demanding applications. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are addressing this problem with their research.

More News on Research & Development

#Research & Development

Bio-based fibers with good flame retardancy

Fibers made from bio-based plastics reduce dependence on fossil raw materials and promote the circular economy. The covalent bonding of flame-retardant additives can open the way for these fibers to enter the mass market.

#Research & Development

Exchange data between textile companies openly, securely and cost-effectively without a central platform – ITA makes it possible

The Institut für Textiltechnik (ITA) of RWTH Aachen University has launched a new demonstrator for an open and secure data space in the textile industry at the Digital Innovation Centre Europe (DICE). For the first time, the demonstrator shows directly and clearly how companies can share their data securely with each other without the need for a central platform. Data exchange is based on shared, freely usable technical foundations.

#Research & Development

Sustainable athletic wear made from bio-based Polyethylene

Conventional sports textiles made from petroleum-based synthetic fibres are to be replaced in the future by sustainable, bio-based, cooling textiles. Polyethylene, previously used mainly in the packaging industry, is thus qualified for use in textiles and, as a bio-based drop-in solution, offers a cost-effective, sustainable alternative for the future.

#Research & Development

Innovation center for textile circular economy inaugurated

Just over eight months after the foundation stone was laid, the new Innovation Center for Textile Circular Economy was officially inaugurated today at TITK Rudolstadt. Thuringia's Minister President Mario Voigt, TITK Director Benjamin Redlingshöfer, and other guests of honor cut the ribbon to the modern building complex and viewed the premises, which are now ready for occupancy. The “DICE – Demonstration and Innovation Center for Textile Circular Economy” is TITK's largest single investment to date. The Free State of Thuringia supported the total cost of €11.5 million with €8 million in GRW and FTI funding.

Latest News

#Dyeing, Drying, Finishing

Orthopac RVMC-20 plus: German Engineering for Smarter Weft Straightening

In times of rising cost pressure and growing quality demands, textile producers worldwide are searching for solutions that combine precision, efficiency, and sustainability. With its latest innovation, the Orthopac RVMC-20 plus, Mahlo once again demonstrates the strength of German engineering: improving proven technology to meet today’s challenges.

#Knitting & Hosiery

KARL MAYER and Lenzing partner to advance warp knitting with scalable cellulose fiber solutions

The Lenzing Group, a leading supplier of regenerated cellulosic fibers for the textile and nonwovens industries, together with KARL MAYER, the global market leader in warp knitting machines and warp preparation systems, debut a joint innovation project during Premiere Vision, Paris.

#Textile chemistry

RUDOLF gets the exclusive global distribution rights for Sanitized® textile technologies

With effect from today, RUDOLF officially assumes exclusive global distribution rights for Sanitized® textile technologies from SANITIZED AG. This is the next milestone in the strategic collaboration announced in 2025, with the partnership between the two companies now fully implemented and expanded worldwide.

#Europe

ICAC to support European Commission on pending PEF legislation

The International Cotton Advisory Committee (ICAC) is proud to announce that it has been included as a member of the European Commission’s Technical Advisory Board (TAB) on the Product Environmental Footprint methodology. The Commission developed the Product Environmental Footprint (PEF) to assess and communicate the life cycle environmental performance of products and organizations.

TOP