[pageLogInLogOut]

#Raw Materials

Small but powerful – microorganisms contribute to greater sustainability at BASF

© 2022 BASF
At BASF, innovation and sustainability are inextricably linked. Researchers worldwide are working on innovative solutions to tap alternative raw material sources and to develop climate-friendly production processes and products. Current research projects and examples of innovation for various value chain steps were presented today by Dr. Melanie Maas-Brunner, member of the Board of Executive Directors of BASF SE and Chief Technology Officer, together with scientists at BASF’s Research Press Conference. The event focused on technologies where microorganisms contribute to greater sustainability.
  • BASF drives transformation towards more sustainability with innovative solutions for raw materials, processes and products
  • White biotechnology uses microorganisms to make resource-conserving and climate-friendly products from a variety of feedstocks
  • Basic research into biodegradability accelerates development of sustainable materials

BASF’s unique R&D platform serves as the foundation for the development of sustainable chemical solutions. “In recent years, we have systematically adapted this platform to the needs of our customers,” said Maas-Brunner. BASF has around 10,000 employees working in research and development worldwide. In 2021, the company invested around €2.2 billion in the development of sustainable products and new technology fields. “Expanding our competencies is an ongoing task for us,” said Maas-Brunner. Examples include generating CO2-free hydrogen, electrifying production processes and advancing the circular economy, as well as tapping new raw material sources and using digital tools even more efficiently.

The investments in research and development are paying off, as evidenced by more than €11 billion in sales generated by products that BASF has placed on the market in the past five years. Within the chemical industry, BASF has a leading position in terms of the number and quality of its patents. “I am especially happy that in 2021, 45 percent of our patent applications were related to innovations with a particular focus on sustainability – and this trend is growing,” Maas-Brunner said. In the long term as well, the company wants to increase its sales and earnings from products that make a significant contribution to sustainability.

“Many of the technologies that will enable a climate-neutral society have not yet been invented,” Maas-Brunner said. It is therefore important to overcome future challenges by being open to technologies and incorporating alternative technology concepts. “To do this, we need alliances – with all players in industry, science, politics and society. Alliances between companies and legislators are especially important because we need good framework conditions underpinning our actions,” Maas-Brunner said.

White biotechnology becoming increasingly important

With its wide range of technological competencies, BASF is well positioned to develop innovative solutions for climate-neutral chemistry. White biotechnology is becoming an increasingly important part of BASF’s toolbox. “These are nature’s tools; people have been using these for a long time and are constantly refining them,” said Dr. Doreen Schachtschabel, Vice President White Biotechnology Research at BASF. Microorganisms, such as bacteria or fungi, are involved in these bioprocesses, including fermentation and bio-catalysis. They use diverse organic materials to transform them into completely different end products. These can be wine, bread or cheese, but also substances for the chemical industry. “White biotechnology has become one of our key technologies that enables us to produce using a variety of feedstocks in an efficient, resource-conserving and, most importantly, flexible manner,” said Schachtschabel.

The list of chemicals and products that BASF produces with white biotechnology methods is long: biopolymers, essential ingredients for human and animal nutrition such as vitamins and enzymes, crop protection products, flavors and fragrances as well as enzymes for detergents and cosmetic ingredients. In five of BASF’s six segments – Chemicals, Materials, Industrial Solutions, Nutrition & Care and Agricultural Solutions – the company already produces more than 3,000 products that are associated with biotechnology or are biodegradable. In 2021, these contributed more than €3.5 billion to sales, and the trend is rising.

To develop new processes and products, BASF researchers work with numerous external academic and industrial partners. The technological foundations and the approaches are usually very similar despite the differing properties of the molecules.

First, a suitable microorganism is identified which can be cultivated. In the next step, the genome is changed, if necessary, thus changing the metabolism in such a way that the bacterium or fungus either makes more of a certain substance or produces an entirely new molecule with new properties.

Then the actual bioprocess begins: The microorganisms produce the target molecule in the desired volumes under optimal conditions. The nutrients and building blocks can be renewable raw materials, such as sugar, but also waste streams, recycled products and chemically synthesized molecules.

Digitalization is essential for the development of new processes and products. It is not only about working more efficiently and effectively. “Without computational biology, specifically bioinformatics, we would not be able to do what we are doing today,” said Schachtschabel.



The development of the insecticide Inscalis™ shows how classical chemistry and biotechnology can ideally complement each other. The first step in the production of this insecticide is fermentation. The intermediate product is then transformed into a finished crop protection product in a subsequent production process based on classical chemistry. “Here, we bring together the best of both worlds: By combining fermentation with selective chemical synthesis, the hybrid process enables us to produce a highly effective and sustainable product cost-efficiently,” said Schachtschabel.

In the future, BASF will continue to rely on a flexible and wide basis of raw materials and technologies. “We recognize that biotechnology, engineering and classical chemistry, when they are optimally integrated, enable processes that are very efficient as well as economically and environmentally sustainable. This will help BASF to achieve its sustainability goals,” said Schachtschabel.

Gaseous carbon as alternative feedstock source

In addition to classical fermentation, which is usually based on renewable raw materials, BASF and the U.S. firm LanzaTech are working together on special processes in which bacteria use gaseous carbon sources, such as carbon monoxide and carbon dioxide, as a raw material. The carbon can come from off-gases from steel mills, refineries and chemical plants but also from gasified household waste. “We would like to tap the potential of gas fermentation to make chemicals for chemical value chains,” said Prof. Michael Helmut Kopf, Director Alternative Fermentation Platforms at BASF. LanzaTech production facilities in China are already using this technology to produce ethanol and a further plant in Belgium will soon be operational. The two companies would now like to produce higher alcohols and other intermediates using gas-fermentation processes.

“Our bacteria are specially designed so that they can transform waste carbon into a variety of desired intermediates,” explained Dr. Sean Simpson, LanzaTech’s founder and Chief Scientific Officer. BASF, in turn, contributes its expertise in chemistry and process technology as well as process intensification into this development project. BASF is also designing the process to separate and purify the products from the fermentation system so these can be fed into the value chains.

There are more than enough alternative carbon sources worldwide that can be used for gas fermentation. “But this will require a change of mindset to enable projects with a cross-sectoral character, for example, connecting the chemical industry with steel mills or waste management firms,” Simpson said. Greater availability of such alternative raw material sources will mean less need for virgin fossil feedstocks to produce chemicals.

“Gasification technologies for residual materials, gas fermentation – together with sustainable hydrogen and renewable energy for product synthesis – and efficient purification processes for the product outputs can, in the future, make an important contribution to improving the sustainability of our value chains,” said Kopf, commenting on the technology’s potential.

Understanding biodegradability in detail

At BASF, bacteria and fungi play a role not only in the production of sustainable products. “For us, sustainability also means knowing exactly how and why microorganisms in the environment biodegrade our products after they are used,” said Professor Andreas Künkel, BASF’s Vice President Research Biopolymers. Biodegradability means that microorganisms metabolize complex organic molecules into energy, water, carbon dioxide and biomass.

To use this natural method and develop fully biodegradable products requires a fundamental understanding of chemistry and of biological processes. Therefore, BASF has significantly expanded its R&D activities relating to biodegradability over the past 10 years. “This incredibly complex topic can only be mastered as an interdisciplinary team,” said Künkel. He stressed the importance of internal and external collaboration with customers, universities and research institutes, with whom BASF carried out extensive experiments in the lab and in the field. “We look in great detail at how we should design materials so that our products biodegrade in soil and in technical systems such as compost and sewage treatment facilities,” Künkel explained.

One example of this is ecovio® mulch film. It is certified biodegradable in soil and helps farmers achieve higher yields. After the harvest, the film can simply be plowed under and will be broken down by microorganisms in the soil. BASF researchers worked with scientists from ETH Zurich to examine how and why the film biodegrades in soil – both in the laboratory as well as in the field. To do so, they developed new methods of analysis which can prove that the carbon in the film is biologically transformed into carbon dioxide and biomass.

Another important application for biodegradable materials are ingredients for laundry detergents, dishwasher detergents and cosmetics that end up in wastewater treatment plants at the end of their life cycles. Here, too, it is crucial to understand exactly how the structure of the material influences its biodegradability.

To expand the portfolio of new certified biodegradable products, digital tools are an important component of the research work. With its extensive collection of data on biodegradability, BASF can develop computer models that can predict at a very early stage of product development the properties and biodegradability of molecules and materials, and thus enable their structures to be adapted accordingly. “BASF is a pioneer and a leader in digital modelling of predictive biodegradability. This is helpful when cooperating with customers to develop tailor-made biodegradable products for a particular application,” said Künkel.

Livestream and more information about the presentations at the research press conference at:

http://basf.com/research-press-conference



More News from BASF Aktiengesellschaft
Performance Chemicals for Textiles Europe

#Research & Development

How innovations drive BASF’s success

“Innovation has always been part of BASF’s DNA. Especially in these volatile times, it is crucial to leverage our innovative strength to develop competitive solutions that differentiate us as a company in our markets and give us a competitive edge,” said Dr. Stephan Kothrade, Member of the Board of Executive Directors of BASF and Chief Technology Officer, at the company’s Research Press Briefing held today. To achieve this, BASF implemented its “Winning Ways” strategy about a year ago with the clear goal of becoming the preferred chemical company to enable its customers’ green transformation.

#Nonwovens

Turning diaper waste into new value: BASF, Essity and TU Wien pioneer circular solutions

BASF, one of the world’s leading chemical companies and manufacturer of superabsorbent polymers (SAP), and Essity, a global leading hygiene and health company, joined forces together with the Technical University of Wien to revolutionize recycling of absorbent hygiene products (AHP).

#Textiles & Apparel / Garment

BASF at SIMAC 2025: Recycling meets Performance – PU solutions for the future of footwear

BASF is presenting new materials, concepts and recycling methods for polyurethanes in footwear at SIMAC Tanning Tech. The leading international trade fair will take place from September 23-25 in Milan, Italy. We will showcase our unique and integrated toolbox of Elastopan® (PU) and thermoplastic polyurethanes Elastollan® and Infinergy®. Together with our partners and customers we bring innovative products to the market offering utmost lightness paired with mechanical performance and automated processing.

#Textile chemistry

BASF strengthens liquid enzyme portfolio for the laundry and cleaning industry

By expanding its product portfolio for liquid enzymes, BASF is further strengthening its position as an innovation leader and provider of essential ingredients for the home care and I&I industry.

More News on Raw Materials

#Natural Fibers

Human Rights Day: Cotton made in Africa reinforces its commitment to ensuring respect for human rights in cotton production

The sustainable cotton standard Cotton made in Africa (CmiA) has always focussed on respect for human rights, including by prohibiting child labour and discrimination. With the new version of the CmiA standard coming into force, AbTF raises requirements for due diligence in the areas of human rights and risk management.

#Natural Fibers

38th International Cotton Conference Bremen launches registration and unveils key topics

Participants can now register online for the 38th International Cotton Conference Bremen, which will be held on 25-27 March 2026 at the Haus der Bürgerschaft parliament building on market square. All visitors can look forward to a high-calibre conference programme, numerous additional meetings and a valuable exchange of knowledge and information. The comprehensive range of topics covering the entire value chain will provide practical expertise, address current developments, answer key industry questions, and provide new impetus for the future.

#Natural Fibers

ICAC to collaborate with Uzbekistan and Bizpando on regenerative agriculture

The Government of Uzbekistan has allocated 55,000 hectares of land to implement a regenerative agriculture program for cotton as part of a collaborative project with the International Cotton Advisory Committee (ICAC) and Bizpando, a company with a a blockchain-based internet platform designed to ensure supply chain compliance.

#Natural Fibers

World Cotton Trade declined 4.1% in 2024/25, according to ICAC's 2025 World Cotton Trade Report

Washington, DC — The International Cotton Advisory Committee (ICAC) has released the 2025 World Cotton Trade Report, which covers trade developments in raw cotton since 1980. An annual publication, it provides analysis of world trade by region; import/export projections by country; matrices of trade flows; and seasonal estimates of export commitments to date.

Latest News

#Spinning

First PA66 spinning plant with EvoQuench successfully commissioned

With the successful commissioning of a multi-digit PA66 spinning line for microfiber yarns, Chinese textile company Shandong Nanshan Fashion Technology Co., Ltd. has added yarn production to its textile value chain.

#Knitting & Hosiery

SHIMA SEIKI returns to ShanghaiTex

Leading flat knitting solutions provider SHIMA SEIKI MFG., LTD. of Wakayama, Japan, together with its Hong Kong and Chinese market subsidiary SHIMA SEIKI (HONG KONG) LTD., will exhibit at the ShanghaiTex 2025 exhibition (Booth No.: Hall N3, Booth A20) held in Shanghai, China this month. This marks the return of SHIMA SEIKI to ShanghaiTex after a 14-year hiatus, its last exhibit at the show having been in 2011.

#Research & Development

Fraunhofer CCPE presents the “Monomaterial Design Set” – Innovative solutions for circular product design

Composite materials made from different types of plastic often extend the lifetime of products but make recycling more difficult in the circular economy. That is why Fraunhofer CCPE has developed the “Monomaterial Design Set”. This new approach helps to reduce the variety of plastics used in durable products and offers circular solutions for designers and product developers.

#Man-Made Fibers

arena introduces renewable LYCRA® EcoMade fiber in its latest swimwear collection

Italian swimwear specialist arena has unveiled a new collection that brings sustainability and performance even closer together. Launched on December 4, the line features swimsuits made from recycled nylon and renewable LYCRA® EcoMade fiber — the first time the bio-based spandex has been used commercially in swimwear.

TOP