#Research & Development

Tapes made from recycled carbon fibers for lightweight construction

Due to their excellent mechanical properties and low weight, carbon fiber reinforced plastics (CFRP) are increasingly being used in lightweight construction applications where high strength and rigidity combined with minimal weight are crucial. However, the growing use of CFRP is also accompanied by large quantities of carbon fiber waste. So far, only processing routes that significantly reduce the properties of CFRP and thus limit the fields of application have been established.
Developed “Infinity” rCF tape variant with trimming of the tape edges. © 2024 Photo: DITF
Developed “Infinity” rCF tape variant with trimming of the tape edges. © 2024 Photo: DITF


The German Institutes of Textile and Fiber Research Denkendorf (DITF) have developed highly oriented tapes made from recycled carbon fibers (rCF) suitable for reuse in high-performance applications such as structural components in the automotive sector.

Carbon fibers are usually produced from petroleum-based raw materials in an energy-intensive process that emits large amounts of CO2. The material has a global warming potential of around 20 - 65 kilograms of CO2 equivalents per kilogram. Nevertheless, the production of CFRP continues to increase and with it the amount of CFRP waste. This is because, depending on the processing method, up to 50 percent offcuts are generated during production. In addition, there are large quantities of CFRP waste in the form of components that have reached the end of their service life. In Europe alone, around 8,000 passenger aircrafts with cosiderable CFRP content are expected to be taken out of service by 2030.

Production of the “Infinity” tapes from a textile carded sliver. © 2024 Photo: DITF
Production of the “Infinity” tapes from a textile carded sliver. © 2024 Photo: DITF


Currently, only 15 percent of CFRP waste is recycled. The remaining 85 percent of these CFRP components end up in waste incineration plants or landfills at the end of their service life. Incineration can generate energy in the form of heat or electricity. However, recycling carbon fibers would contribute far more to climate and resource protection.

In recent years, various recycling processes for CFRP, such as pyrolysis or solvolysis, have therefore been further developed in order to recover high-quality carbon fibers.

Compared to virgin fibers, the possible uses of recycled carbon fibers are significantly limited. In a virgin fiber product, carbon fibers are usually present in filament strands of technically unlimited length and oriented in the direction of the load. In this way, the carbon fiber unfolds its full potential, as it has its maximum strength in the fiber direction. Recycling inevitably results in a shortening of the carbon fibers to lengths in the micrometer to centimeter range. In addition, the orientation of the carbon fibers is lost and the fibers are initially in a tangled position.

The DITF have been successfully working for around 15 years on adapting classic spinning processes to the new fiber material rCF. The aim is to develop a new category of rCF semi-finished products and improve their mechanical properties so that they can actually replace virgin fiber material in structural applications. Only then will carbon fiber-based composite materials be truly recyclable.

In order to produce an oriented semi-finished product similar to a carbon product from virgin fibers, it is crucial to eliminate the tangled position of the rCF and to align the fibers parallel to each other. One promising way of achieving this is the production of highly oriented tapes.

In a first step, the carbon fibers are opened and mixed with thermoplastic matrix fibers (polyamide 6). The fiber mixture is then further separated and oriented in a carding process modified for the processing of carbon fibers. At the outlet of the carding machine, the fiber card web produced in the carding process is combined into a fiber sliver and deposited in a can. This rCF/PA6 fiber sliver is the starting material for the subsequent tape forming process and already has a pre-orientation of the carbon fibers. The orientation of the fibers can be increased in the subsequent drawing process. By drawing the fiber tape, the fibers are moved in the direction of draft and aligned longitudinally. The final process step is tape formation, in which the fiber tape is under tension formed into the desired shape and then fixed into a continuous tape structure. During fixation, the thermoplastic fibers melt partially or completely and then solidify.

Developed “Infinity” rCF tape variant without trimming of the tape edges. © 2024 Photo: DITF
Developed “Infinity” rCF tape variant without trimming of the tape edges. © 2024 Photo: DITF


This technology developed at the DITF for the production of highly oriented rCF tapes was used as part of the “Infinity” research project (03LB3006) to demonstrate a sustainable and fiber-friendly recycling cycle for CFRP. Based on the “Infinity” tapes, a composite material was developed that achieved 88 percent of the tensile strength and tensile modulus of a comparable virgin fiber product. In addition, a life cycle analysis showed that the global warming potential is reduced by approx. 49 percent when using pyrolysis fibers and by approx. 66 percent for rCF from production waste.

The findings thus illustrate a way towards true substitution of virgin fiber CFRP with recycled CFRP instead of downcycling to low-orientation materials and the associated loss of mechanical properties.



More News from Deutsche Institute für Textil- und Faserforschung Denkendorf

#Research & Development

DITF send a signal for climate protection

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have successfully implemented extensive investments in photovoltaic systems at their site in Denkendorf. The systems installed on the roofs of the buildings and covered parking lots have a total installed capacity of 840 kilowatt peak (kWp). The DITF invested 1.6 million euros in this with the support of the state of Baden-Württemberg. The system was ceremonially put into operation on September 17, 2025.

#Research & Development

4.2 million Euros for research into textile recycling

Around the world, used textiles are still rarely recycled and pile up into huge mountains of waste. A recent study by the Boston Consulting Group (BCG) drew attention to this problem. However, the low recycling rate is also due to the fact that only a small percentage of used textiles are actually suitable for recycling into high-quality materials and for demanding applications. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are addressing this problem with their research.

#Research & Development

Denkendorf fiber chart revised

A companion during studies and for practical use in the workplace: generations of textile experts have used the Denkendorf Fiber Chart to keep track of all the important characteristic values of textile raw materials. Following the first two editions in the 1970s and 1980s, Denkendorf scientists have comprehensively revised the Fiber Chart. The third edition is now available in digital form for the first time.

#Research & Development

Carbowave: Energy efficiency in carbon fiber production

A new technology uses microwaves and plasma heating to produce carbon fibers in an energy-efficient manner. This means high-strength composite materials can be produced more cheaply and efficiently. The German Institutes of Textile and Fiber Research (DITF) are part of the Carbowave research consortium, which aims to improve and commercialize microwave and plasma-induced carbonization.

More News on Research & Development

#Research & Development

The Textile Institute marks 100 years with a global expansion drive

Fresh from its highly successful 63rd conference held in Porto, Portugal, from October 7-10, The Textile Institute (TI) will celebrate a major milestone at the ITMA Asia+CITME textile machinery exhibition in Singapore later this month.

#Recycling / Circular Economy

Closing the Loop in the Textile Industry: Value Creation in the State of Brandenburg

How can the state of Brandenburg benefit from a circular textile industry? This question is addressed in the new policy paper "Closing the loop in the textile industry: Value creation in the state of Brandenburg." Based on the „TexPHB“ feasibility study funded by the Brandenburg Ministry of Climate Protection, it shows how textile waste can be integrated into new value chains.

#Research & Development

Better, faster, bio-based: Functional new Plastic alternatives

How can new bio-based and biohybrid materials with improved features be developed faster? Six Fraunhofer institutes are jointly exploring this question in the SUBI²MA flagship project, using an innovative bio-based polyamide developed by Fraunhofer researchers as a model. Its specific properties make it a promising alternative to fossil-based plastics.

#Research & Development

A smarter way to verified Chemical Compliance

Hohenstein and GoBlu Drive Innovation in Sustainable Supply Chain Management As regulatory demands, customer expectations, and sustainability goals continue to grow, the ability to manage chemical compliance and data across complex supply chains has become critical. Hohenstein and The BHive® by GoBlu are initiating a strategic partnership to enhance chemical management in the textile sector. The collaboration delivers more than just a service – it provides an integrated, future-ready solution for brands, manufacturers and suppliers seeking trusted chemical management and credible sustainability.

Latest News

#Heimtextil 2026

Heimtextil 2026 strengthens the global home textile industry with trends, designs and AI technologies

With an optimised hall layout, progressive design collaborations, inspiring trends and AI-driven innovations, Heimtextil 2026 reacts to the current market situation – and offers the industry a reliable constant in challenging times. Under the motto ‘Lead the Change’, the leading trade fair for home and contract textiles and textile design shows how challenges can be turned into opportunities. From 13 to 16 January, more than 3,100 exhibitors from 65 countries will provide a comprehensive market overview with new collections and textile solutions. As a knowledge hub, Heimtextil delivers new strategies and concrete solutions for future business success.

#Recycling / Circular Economy

A circular European value chain turns post-consumer textile waste into new garments for Dutch retailer Zeeman

A closed-loop recycling project has successfully transformed 24 tons of post-consumer textiles into nearly 50,000 garments for Dutch retailer Zeeman, with each product containing a high-rate of 70% recycled content. This achievement represents a major milestone in accelerating textile-to-textile recycling in Europe.

#Nonwovens

Freudenberg accelerates local production for apparel market by expanding its site in India

Freudenberg Performance Materials Apparel (Freudenberg Apparel) celebrates the grand opening of a major expansion at its manufacturing facility in Chennai, India, on October 14, adding 20,000 square feet of production space and introducing new production lines tailored to the Indian apparel market. This strategic investment is aimed at significantly reducing lead times and enhancing the availability of high-quality, locally produced interlinings for the fast-evolving apparel sector in India and South Asia.

#Man-Made Fibers

Eastman Naia™ launches Sustainability Progress Report and 2025-2030 Sustainability Goals at Textile Exchange Conference, reaffirming commitment to circular innovation

At the Textile Exchange Conference 2025, Eastman Naia™ released its 2025 Sustainability Progress Report and announced its 2025–2030 Sustainability Goals, presenting a record of genuine progress and outlining a renewed roadmap for the years ahead. This announcement demonstrates Naia™’s long-standing commitment to driving an industry-wide shift toward sustainability through scalable, commercially viable material solutions.

TOP