[pageLogInLogOut]

#Research & Development

Checking items of clothing using a smartphone, AI and infrared spectroscopy

© Fraunhofer IPMS / If the label with cleaning instructions is no longer legible: A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from. This allows you to set the correct wash cycle.
Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Infrared spectrometers are powerful measuring instruments when it comes to non-destructive analysis of organic materials. The Fraunhofer Institute for Photonic Microsystems IPMS in Dresden has recently developed a spectral analyzer system that recognizes and analyzes textile fabrics. The system can also reliably recognize mixed fabrics. Possible applications range from checking fabrics when out shopping to cleaning garments correctly, and even sustainable, sorted recycling. The spectrometer is so tiny, it can be integrated into a smartphone.

Researchers at Fraunhofer rely on near-infrared (NIR) spectroscopy to achieve the required reliability and accuracy when identifying textiles. The system works for wavelengths between 950 and 1900 nanometers, which is close to the visible spectrum. Advantages of near-infrared technology include being easy to use and having a wide range of applications. “We combine NIR spectroscopy with imaging and AI to achieve higher accuracy when recognizing and analyzing objects,” explains Dr. Heinrich Grüger, research scientist in the Sensoric Micromodules department at Fraunhofer IPMS.

© Fraunhofer IPMS / The near-infrared spectrometer measures just 10 mm × 10 mm and is 6.5 mm thick. It fits into any standard smartphone. The system leverages the camera module for the analysis.
© Fraunhofer IPMS / The near-infrared spectrometer measures just 10 mm × 10 mm and is 6.5 mm thick. It fits into any standard smartphone. The system leverages the camera module for the analysis.


How textile analysis works  

Firstly, a conventional camera module captures an image of the garment. The AI selects a specific point from the fabric’s image data to be examined by the spectral analyzer module. Light reflected from the fabric is captured by the spectrometer module. There, it passes through an entrance slit, is transformed into parallel light beams using a collimating mirror and projected onto a grating using a scanning mirror. Depending on the angle of incidence and exit, the grating splits the light beams into different wavelengths. Light reflected from the grating is directed by the scanner mirror to a detector which captures the light as an electrical signal. An A/D converter then digitizes these signals, which are subsequently analyzed in the signal processor. The resulting spectrometric profile for the textile fabric reveals which fibers it is made from by comparing to a reference database.“ The optical resolution is 10 nanometers. This high resolution means the NIR spectrometer can also use AI to identify mixed fabrics such as items of clothing made from polyester and cotton,” says Grüger. Measuring just 10 mm × 10 mm and being 6.5 mm thick, the system is so compact it could easily be integrated into a standard smartphone.




Recycling old clothing

Grüger sees an important application for the AI-controlled spectrometer when it comes to recycling. According to the Federal Statistical Office of Germany, approximately 176,200 tons of textile and clothing waste was collected from private homes in Germany in 2021. NIR spectroscopy could improve recycling efficiency and reduce the mountain of old clothing. This would enable companies that recycle old clothing to sort it more efficiently and faster. Textiles that are still in one piece, for instance, go to the second-hand trade. Damaged textiles are sorted for recycling, and the fibers they are made from, such as linen, silk, cotton or lyocell, can be reused. Severely soiled textiles would be incinerated or processed into insulation mats, for example. Spectroscopic identifies and sorts textiles more accurately and much faster than a human can.

If NIR spectroscopy was to be integrated into a smartphone, end-users might also benefit from the Fraunhofer institute’s technology. When buying clothes, a quick check with a smartphone reveals whether that expensive silk scarf is genuinely made from silk, or whether that exclusive dress from the fashion label is not instead a counterfeit, exposed through an alternative mix of fabrics. And should the label with the cleaning instructions no longer be legible, the smartphone has a textile scanner to identify the fabric and so determine the appropriate wash cycle.

Food check and dermatology  

Researchers at Fraunhofer IPMS can even envisage applications beyond the textile industry. Smartphones fitted with spectrometers might be used to provide information about the quality of groceries such as fruit and vegetables when out shopping. The technology might conceivably also be used to examine skin. A quick scan with the cell phone spectrometer could identify particularly dry or greasy patches. Perhaps applications in medical diagnostics might even be conceivable — examining patches of skin where a melanoma is suspected, for example — but this would need professional involvement too.

In the developmental phase, the Fraunhofer team benefited from decades of experience building NIR spectrometers using MEMS technology (microelectromechanical systems). “Over the years, we have succeeded in miniaturizing large laboratory spectroscopy instruments using MEMS technology to make it suitable for mobile use too,” says Grüger. In 2000, together with current institute director, Prof. Harald Schenk, he invented the scanning grating spectrometer, which is still regarded as the entry point into MEMS spectroscopy.




More News from Fraunhofer Institute for Industrial Mathematics ITWM

More News on Research & Development

#Research & Development

Sustainable athletic wear made from bio-based Polyethylene

Conventional sports textiles made from petroleum-based synthetic fibres are to be replaced in the future by sustainable, bio-based, cooling textiles. Polyethylene, previously used mainly in the packaging industry, is thus qualified for use in textiles and, as a bio-based drop-in solution, offers a cost-effective, sustainable alternative for the future.

#Research & Development

Innovation center for textile circular economy inaugurated

Just over eight months after the foundation stone was laid, the new Innovation Center for Textile Circular Economy was officially inaugurated today at TITK Rudolstadt. Thuringia's Minister President Mario Voigt, TITK Director Benjamin Redlingshöfer, and other guests of honor cut the ribbon to the modern building complex and viewed the premises, which are now ready for occupancy. The “DICE – Demonstration and Innovation Center for Textile Circular Economy” is TITK's largest single investment to date. The Free State of Thuringia supported the total cost of €11.5 million with €8 million in GRW and FTI funding.

#Research & Development

Sustainable design of Geosynthetics and roof underlayments made from recyclates

Is it possible to recover plastic recyclates from previously unused waste streams in order to produce high-quality fibers and films? How can bio-based polymer fibers be manufactured so as to allow adjustable biodegradability? These are the questions being addressed by researchers from the Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE in the Zirk-Tex project.

#Research & Development

India, ITA and innovation – enhanced cooperation in research, implementation and bilateral projects such as hydrogen mobility

The Indian Consul General, Dr Shuchita Kishore, visited the Institut für Textiltechnik (ITA) of RWTH Aachen University on 15 December to inspect the joint project between the ITA, the Indian Institute of Technology (IIT) Bombay and industrial partners from India and Germany and to tour the ITA.

Latest News

#Knitting & Hosiery

Terrot introduces T-Frame platform to redefine stability and flexibility in large-diameter circular knitting

Terrot Textilmaschinen GmbH has unveiled the new T-Frame, a universal machine frame platform for large-diameter circular knitting machines. Designed to meet growing demands for flexibility, stability, and operational safety, the T-Frame provides a next-generation foundation for both current and future industrial knitting machines, combining German engineering expertise with a modular, future-ready design approach.

#Business

Canopy introduces a first-of-its-kind $2 billion USD investment blueprint to decarbonize global materials supply chains

Today, the global, solutions-driven not-for-profit Canopy joined partners at Davos to introduce a new finance model designed to accelerate the growth of low-carbon materials and transform the paper, packaging, and textile supply chains. The event was anchored by a keynote speech from Sri A Revanth Reddy, Hon’ble Chief Minister of Telangana, with India set to host the first iteration of the new investment blueprint.

#Yarns

Biella Yarn launches Collection “Reimagined” for Spring/Summer 2027 with fresh approach to fibre design

Biella Yarn, the flat knitting brand of Suedwolle Group, introduces its Spring/Summer 2027 collection “Reimagined” featuring refined yarn blends and advanced spinning technologies designed for contemporary summer knitwear. Under the motto “And the story goes on…”, Biella Yarn continues to push the boundaries of responsible yarn development, offering versatile materials that elevate modern craftsmanship.

#Recycled_Fibers

Circular progress: Trevira® CS Eco fabrics can now be made using textile-recycled, permanently flame-retardant fibers and yarns

Indorama Ventures, a global sustainable chemical company, takes an important next step toward making textiles more circular for homes and public spaces. To support fabric makers in creating a more sustainable version of the well-known flame-retardant Trevira CS fabric, the company now offers Trevira® flame-retardant fibers and filament yarns that contain 50% recycled textile material. First customers were introduced to the new offering during Heimtextil trade show mid-January in Frankfurt, Germany.

TOP