[pageLogInLogOut]

#Research & Development

Latent epoxy systems for fiber-reinforced plastics

Test specimen of a fiber-reinforced plastic based on the new single-component system (c) 2020 DITF
Fiber-reinforced plastics (FRP) convince with excellent properties such as high strength, low weight, stiffness and vibration damping. It is therefore not surprising that the market for these materials is growing continuously. Forecasts predict annual growth rates of up to double figures.

New resin systems enable simplification of process technology

However, the special properties of FRP have so far been offset by relatively high production costs due to the complex manufacturing processes involved. Low raw material costs and low-cost production techniques are necessary to establish FRP in industrial series production on a large scale. These have to be designed in such a way that they enable the production of components of high and, above all, constant quality – require-ments which are not always easy to meet, especially for large components such as rotor blades of wind turbines.

Established systems with many disadvantages

In the processing of established thermoset two-component epoxy systems, some difficulties have to be handled to reach these objectives. For example, reaction accelerators are usually added to epoxies, which cause faster curing and thus a more cost-effective production. However, the resins in this form are difficult to store and transport: Due to the reaction accelerators they behave very reactive and therefore have to be cooled in a defined way with high equipment efforts until processing.

In established two-component epoxy systems, resin and hardener are mixed directly before processing. During processing, cross-linking takes place within a short period of time. There is a risk of pre-crosslinking, which starts before the textile layers are com-pletely penetrated by the resin. If this process is not perfectly coordinated, materials with non-infiltrated areas are obtained which are of inferior quality. Air inclusions can also occur during the mixing of resin and hardener, which can only be reduced by complex venting techniques of the epoxy system.

To reduce the effort of these demanding process techniques was the goal of a research project at the DITF Denkendorf, which deals with the optimization and establishment of so-called latent epoxy systems. In such systems, resin and hardener can be present in a mixture already ready for use (single-component system). Although this mixture is highly reactive, the polymerization cannot start uncontrolled and prematurely because the reaction-initiating pre-catalyst used is chemically protected. The resin system is storable and of constant viscosity, which is a considerable advantage for the infiltration process. The viscosity can even be reduced during processing by adding heat, so that bubble-free infiltration of the textile layers is even more possible. The catalyst is only activated at a defined temperature after the infiltration is completed and then initiates a fast and complete polymerization of the epoxy resin.


Single-component systems are in principle already commercially available. In these, however, the hardener component of the epoxy system is only inhibited. However, these systems do not show complete latency, since they can be activated over a wide temperature range and a slow cross-linking reaction starts just above room temperature.

The systems developed at the University of Stuttgart, Institute of Polymer Chemistry (IPOC), Chair of Macromolecular Materials and Fiber Chemistry and the DITF, on the other hand, are characterized by complete latency: The single-component system of resin and hardener is completely stable over a wide temperature and time range and has a constant viscosity.

Microscopic cross-sectional view of the test specimen (c) 2020 Denkendorf
Microscopic cross-sectional view of the test specimen (c) 2020 Denkendorf

The advantages of the newly developed single-component epoxy system are primarily the possibility to infiltrate even large components with consistent quality and to implement a subsequent polymerization precisely, quickly and thus practically in serial production. The components can be manufactured with constant quality. Air inclusions can be almost completely avoided. The process-technical advantages include the fact that no mixing technology is required for the resin system and that the single-component resin systems can be stored and transported easily and safely.

Within the framework of the research project, latent single-component epoxy systems were brought to such a high level of development at the DITF Denkendorf that they are now mature for serial, industrial production. Due to the cost savings in process technology, the financial obstacle for the processing of FRP by small and medium-sized companies can be overcome more easily.


More News from Deutsche Institute für Textil- und Faserforschung Denkendorf

#Research & Development

DITF send a signal for climate protection

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have successfully implemented extensive investments in photovoltaic systems at their site in Denkendorf. The systems installed on the roofs of the buildings and covered parking lots have a total installed capacity of 840 kilowatt peak (kWp). The DITF invested 1.6 million euros in this with the support of the state of Baden-Württemberg. The system was ceremonially put into operation on September 17, 2025.

#Research & Development

4.2 million Euros for research into textile recycling

Around the world, used textiles are still rarely recycled and pile up into huge mountains of waste. A recent study by the Boston Consulting Group (BCG) drew attention to this problem. However, the low recycling rate is also due to the fact that only a small percentage of used textiles are actually suitable for recycling into high-quality materials and for demanding applications. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are addressing this problem with their research.

#Research & Development

Denkendorf fiber chart revised

A companion during studies and for practical use in the workplace: generations of textile experts have used the Denkendorf Fiber Chart to keep track of all the important characteristic values of textile raw materials. Following the first two editions in the 1970s and 1980s, Denkendorf scientists have comprehensively revised the Fiber Chart. The third edition is now available in digital form for the first time.

#Research & Development

Carbowave: Energy efficiency in carbon fiber production

A new technology uses microwaves and plasma heating to produce carbon fibers in an energy-efficient manner. This means high-strength composite materials can be produced more cheaply and efficiently. The German Institutes of Textile and Fiber Research (DITF) are part of the Carbowave research consortium, which aims to improve and commercialize microwave and plasma-induced carbonization.

More News on Research & Development

#Research & Development

The Textile Institute marks 100 years with a global expansion drive

Fresh from its highly successful 63rd conference held in Porto, Portugal, from October 7-10, The Textile Institute (TI) will celebrate a major milestone at the ITMA Asia+CITME textile machinery exhibition in Singapore later this month.

#Recycling / Circular Economy

Closing the Loop in the Textile Industry: Value Creation in the State of Brandenburg

How can the state of Brandenburg benefit from a circular textile industry? This question is addressed in the new policy paper "Closing the loop in the textile industry: Value creation in the state of Brandenburg." Based on the „TexPHB“ feasibility study funded by the Brandenburg Ministry of Climate Protection, it shows how textile waste can be integrated into new value chains.

#Research & Development

Better, faster, bio-based: Functional new Plastic alternatives

How can new bio-based and biohybrid materials with improved features be developed faster? Six Fraunhofer institutes are jointly exploring this question in the SUBI²MA flagship project, using an innovative bio-based polyamide developed by Fraunhofer researchers as a model. Its specific properties make it a promising alternative to fossil-based plastics.

#Research & Development

A smarter way to verified Chemical Compliance

Hohenstein and GoBlu Drive Innovation in Sustainable Supply Chain Management As regulatory demands, customer expectations, and sustainability goals continue to grow, the ability to manage chemical compliance and data across complex supply chains has become critical. Hohenstein and The BHive® by GoBlu are initiating a strategic partnership to enhance chemical management in the textile sector. The collaboration delivers more than just a service – it provides an integrated, future-ready solution for brands, manufacturers and suppliers seeking trusted chemical management and credible sustainability.

Latest News

#Textiles & Apparel / Garment

Nike unites innovation, design and product teams to accelerate athlete-centered innovation

Nike, Jordan Brand and Converse are joining forces under a new, athlete-focused creation structure aimed at accelerating innovation and driving growth across NIKE, Inc. The new setup unites the Innovation, Design and Product teams from all three brands into a single “creation engine” that will enable greater sharing of insights, technology and manufacturing methods throughout the innovation process. This integration is part of Nike’s new Sport Offense strategy and is designed to enhance the creation of products that help athletes perform at their best.

#ITMA Asia + CITME Singapore 2025

DORNIER celebrates its anniversary at ITMA Asia + CITME

To mark its 75th anniversary, machine and plant manufacturer Lindauer DORNIER will be presenting the latest developments in its rapier and air-jet weaving machines at ITMA Asia + CITME in Singapore (Hall 2, Stand B401) from 28 to 31 October 2025. The focus will be on energy-efficient weaving technologies, new IoT solutions for networked textile production and systems for the series production of modern fibre composite components.

#Natural Fibers

BCI warns against ‘dangerous dilution’ of EU corporate directives

The approval of the European Commission’s Omnibus I proposal by the European Parliament’s Committee on Legal Affairs, accepting controversial changes to key sustainability directives is of great concern. These changes, namely to the Corporate Sustainability Reporting Directive (CSRD) and the Corporate Sustainability Due Diligence Directive (CSDDD), threaten to significantly dilute business reporting and due diligence obligations.

#Sustainability

Pioneering open-source framework shows how early innovation drives a just and net-zero fashion future

The non-profit H&M Foundation, in collaboration with Accenture, has unveiled From Signals to Systems Change, an insight report calling on the fashion industry to rethink its role in transformation. At its core is the Reimagined System Map, a pioneering open-source framework that visualises how early-stage innovation could drive a just and net-zero textile future.

TOP