[pageLogInLogOut]

#Research & Development

Latent epoxy systems for fiber-reinforced plastics

Test specimen of a fiber-reinforced plastic based on the new single-component system (c) 2020 DITF
Fiber-reinforced plastics (FRP) convince with excellent properties such as high strength, low weight, stiffness and vibration damping. It is therefore not surprising that the market for these materials is growing continuously. Forecasts predict annual growth rates of up to double figures.

New resin systems enable simplification of process technology

However, the special properties of FRP have so far been offset by relatively high production costs due to the complex manufacturing processes involved. Low raw material costs and low-cost production techniques are necessary to establish FRP in industrial series production on a large scale. These have to be designed in such a way that they enable the production of components of high and, above all, constant quality – require-ments which are not always easy to meet, especially for large components such as rotor blades of wind turbines.

Established systems with many disadvantages

In the processing of established thermoset two-component epoxy systems, some difficulties have to be handled to reach these objectives. For example, reaction accelerators are usually added to epoxies, which cause faster curing and thus a more cost-effective production. However, the resins in this form are difficult to store and transport: Due to the reaction accelerators they behave very reactive and therefore have to be cooled in a defined way with high equipment efforts until processing.

In established two-component epoxy systems, resin and hardener are mixed directly before processing. During processing, cross-linking takes place within a short period of time. There is a risk of pre-crosslinking, which starts before the textile layers are com-pletely penetrated by the resin. If this process is not perfectly coordinated, materials with non-infiltrated areas are obtained which are of inferior quality. Air inclusions can also occur during the mixing of resin and hardener, which can only be reduced by complex venting techniques of the epoxy system.

To reduce the effort of these demanding process techniques was the goal of a research project at the DITF Denkendorf, which deals with the optimization and establishment of so-called latent epoxy systems. In such systems, resin and hardener can be present in a mixture already ready for use (single-component system). Although this mixture is highly reactive, the polymerization cannot start uncontrolled and prematurely because the reaction-initiating pre-catalyst used is chemically protected. The resin system is storable and of constant viscosity, which is a considerable advantage for the infiltration process. The viscosity can even be reduced during processing by adding heat, so that bubble-free infiltration of the textile layers is even more possible. The catalyst is only activated at a defined temperature after the infiltration is completed and then initiates a fast and complete polymerization of the epoxy resin.


Single-component systems are in principle already commercially available. In these, however, the hardener component of the epoxy system is only inhibited. However, these systems do not show complete latency, since they can be activated over a wide temperature range and a slow cross-linking reaction starts just above room temperature.

The systems developed at the University of Stuttgart, Institute of Polymer Chemistry (IPOC), Chair of Macromolecular Materials and Fiber Chemistry and the DITF, on the other hand, are characterized by complete latency: The single-component system of resin and hardener is completely stable over a wide temperature and time range and has a constant viscosity.

Microscopic cross-sectional view of the test specimen (c) 2020 Denkendorf
Microscopic cross-sectional view of the test specimen (c) 2020 Denkendorf

The advantages of the newly developed single-component epoxy system are primarily the possibility to infiltrate even large components with consistent quality and to implement a subsequent polymerization precisely, quickly and thus practically in serial production. The components can be manufactured with constant quality. Air inclusions can be almost completely avoided. The process-technical advantages include the fact that no mixing technology is required for the resin system and that the single-component resin systems can be stored and transported easily and safely.

Within the framework of the research project, latent single-component epoxy systems were brought to such a high level of development at the DITF Denkendorf that they are now mature for serial, industrial production. Due to the cost savings in process technology, the financial obstacle for the processing of FRP by small and medium-sized companies can be overcome more easily.


More News from Deutsche Institute für Textil- und Faserforschung Denkendorf

#Research & Development

More safety and comfort for protective clothing thanks to auxetic fabrics

When everyday materials are pulled, they stretch or elongate in the direction of the pull and become narrower in cross-section. We can also observe this property in two-dimensional textiles. Auxetic structures behave differently here. They have the striking property of not changing under tensile stress or even increasing their width or thickness. These properties are advantageous, for example, in protective textiles or textile filter media. The DITF are researching auxetic fabrics for various applications.

#Research & Development

Panty liners prevent bacterial vaginosis

Worldwide, almost one third of women of childbearing age suffer from bacterial vaginosis. This is when the sensitive microbiome of the vagina becomes unbalanced. Such a disorder of the vaginal flora can cause urogenital infections, abscesses on the ovaries or fallopian tubes or premature births. This significantly increases the risk of infertility in women and of contracting a sexually transmitted disease or HIV.

#Research & Development

DITF send a signal for climate protection

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have successfully implemented extensive investments in photovoltaic systems at their site in Denkendorf. The systems installed on the roofs of the buildings and covered parking lots have a total installed capacity of 840 kilowatt peak (kWp). The DITF invested 1.6 million euros in this with the support of the state of Baden-Württemberg. The system was ceremonially put into operation on September 17, 2025.

#Research & Development

4.2 million Euros for research into textile recycling

Around the world, used textiles are still rarely recycled and pile up into huge mountains of waste. A recent study by the Boston Consulting Group (BCG) drew attention to this problem. However, the low recycling rate is also due to the fact that only a small percentage of used textiles are actually suitable for recycling into high-quality materials and for demanding applications. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are addressing this problem with their research.

More News on Research & Development

#Research & Development

Fraunhofer CCPE presents the “Monomaterial Design Set” – Innovative solutions for circular product design

Composite materials made from different types of plastic often extend the lifetime of products but make recycling more difficult in the circular economy. That is why Fraunhofer CCPE has developed the “Monomaterial Design Set”. This new approach helps to reduce the variety of plastics used in durable products and offers circular solutions for designers and product developers.

#Research & Development

How innovations drive BASF’s success

“Innovation has always been part of BASF’s DNA. Especially in these volatile times, it is crucial to leverage our innovative strength to develop competitive solutions that differentiate us as a company in our markets and give us a competitive edge,” said Dr. Stephan Kothrade, Member of the Board of Executive Directors of BASF and Chief Technology Officer, at the company’s Research Press Briefing held today. To achieve this, BASF implemented its “Winning Ways” strategy about a year ago with the clear goal of becoming the preferred chemical company to enable its customers’ green transformation.

#Research & Development

Small tolerances, big impact and a recyclable alternative to elastane

ITA Master's student Janne Warnecke investigated tension differences over the fabric width in the weaving process and thereby contributed to quality assurance; ITA Bachelor's student Jasmin Roos found a basis for the development of recyclable yarns and textiles. For these developments, they were awarded the Walter Reiners Foundation's Promotion and Sustainability Prizes on 27 November. Peter D. Dornier, Chairman of the Walter Reiners Foundation, presented the awards at the Aachen-Dresden-Denkendorf International Textile Conference (ADD-ITC) in Aachen, Germany.

#Associations

Young researchers recognised for cutting-edge work in recycling, fibre technology and textile mechanics

At the Aachen-Dresden-Denkendorf International Textile Conference held in Aachen at the end of November, Peter D. Dornier, Chairman of the Walter Reiners Foundation of the VDMA, honoured five successful young engineers. Promotion and sustainability prizes were awarded in the categories bachelor/project theses and diploma/master theses. Academic theses that develop solutions for resource-saving products and technologies, for example, are eligible for the sustainability awards.

Latest News

#People

Happy Holidays!

Dear reader, the year 2025 is drawing to a close. We are entering what we hope will be a peaceful holiday season, spending time with our families and taking a moment to pause and reflect. We hope we have been able to support you once again this year with relevant news and articles, and we look forward to surprising you with many innovations in the coming year. Enjoy the festive season, stay healthy, and we wish you a happy and joyful holiday season.

#Weaving

Lindauer Dornier announces leadership transition in weaving machine business

After more than ten successful years at Lindauer DORNIER GmbH, Mr Wolfgang Schöffl will leave the family-owned company at the end of the year to enter well-deserved retirement.

#Heimtextil 2026

Texpertise Focus AI: Messe Frankfurt puts Artificial Intelligence centre stage at its international textile and apparel trade fairs

Under the banner 'Texpertise Focus AI, Messe Frankfurt will place a strong emphasis on Artificial Intelligence (AI) across its international textile and apparel trade fairs from 2026 onwards, setting a future-shaping signal for the industry. The initiative highlights the responsible use of AI along the entire textile value chain, from fibre production to the point of sale. The programme will launch at Heimtextil in Frankfurt in January 2026.

#Technical Textiles

Autoneum and Polestar set new benchmarks for passenger experience and sustainability

As the global market leader in sustainable acoustic and thermal management, Autoneum is a key supplier of interior and exterior components for the highly anticipated Polestar 5 model. The successful collaboration between Autoneum and Polestar marks a significant milestone in sustainable automotive engineering: the electric grand tourer sports car features several innovations in lightweight, fully recyclable polyester-based components that ensure a superior driving experience. Polestar 5 was revealed at the IAA Mobility 2025 in Munich and is available in 24 markets.

TOP